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On the determinacy of repetitive structures
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Abstract

This paper shows that repetitive, in0nite structures cannot be simultaneously statically, and
kinematically, determinate.
? 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Foams and other materials with a lattice-like structure are often considered as pin-
jointed frames that are essentially in0nite and repetitive, see e.g. Deshpande et al.
(2001). A natural question for these structures is: what is the minimum number of
bars that will lead to a rigid structure? A closely related question is whether it is
possible to build a pin-jointed structure where changing the length of any bar leads
only to a change of geometry of the structure, and not to self-stress—of interest if
trying to design an adaptive structure.
For )nite structures, these question may be answered straightforwardly using

Maxwell’s rule (Maxwell, 1864,1890). If an unsupported, two-dimensional frame com-
posed of rigid bars connected by frictionless joints is statically and kinematically deter-
minate, the number of bars b must be 2j−3, where j is the number of joints, although
these bars must be properly positioned (Laman, 1970). More generally (Calladine,
1978), the frame will support s states of self-stress (bar tensions in the absence of
load) and m mechanisms (joint displacements without bar extension), where

s− m= b− 2j + 3: (1)
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Fig. 1. (a) A kinematically indeterminate structure, with one mechanism, (b) a statically and kinematically
determinate structure and (c) a statically indeterminate structure, with one state of self-stress.

Fig. 1 shows three simple 0nite 2D structures demonstrating these ideas. Fig. 1(b) is
simultaneously statically and kinematically determinate. Adding bars to this structure,
Fig. 1(c), leads to the possibility of states of self-stress, and hence static indeterminacy;
removing bars, Fig. 1(a), leads to possible mechanisms, and kinematic indeterminacy.
Maxwell’s rule can be considered as ensuring that the equilibrium/compatibility ma-
trices for the structure are square (Pellegrino and Calladine, 1986). Equilibrium and
compatibility matrices will be discussed in Sections 2 and 3.
This paper deals with in0nite, repetitive structures. All the examples and calculations

will be for 2D structures, for simplicity, but the conclusion will be equally valid for
3D. We will de0ne a unit cell for the structure, and assume that loads and deformations
of the structure repeat with this unit cell. For this assumption, to ensure that there is a
square equilibrium and compatibility matrix requires (in 2D) that for every node in the
unit cell there are two bars. Indeed, this is the only way that the overall structure will
be able to satisfy Maxwell’s rule. Because every bar joins two nodes, this implies that
the average number of bars for each joint (the valency) is four; there are an in0nite
variety of structures that will satisfy this (GrunbaGum and Shephard, 1987). This paper
will show that no such structure can be rigid.
A very simple example of a 2D repetitive structure with a valency of four is the

simple square grid shown in Fig. 2. This is clearly neither statically nor kinematically
determinate. Indeed, Deshpande et al. (2001) show that this structure (or any other
with similarly situated nodes, where the smallest translational unit cell contains a
single node) would require a valency of six to be rigid. None of the other examples
in this paper have similarly situated nodes.
This paper will examine two diIerent approaches to answer the questions of when

repetitive structures are rigid, one based on statics and the other on kinematics. For
structures which overall satisfy Maxwell’s rule, they come to incompatible conclu-
sions, and this paradox is resolved by showing that repetitive structures cannot be both
statically, and kinematically determinate.

2. A statics approach

In this approach, we write equilibrium equations relating internal tensions in the
members to loads applied at the nodes. This leads to an equilibrium matrix A relating
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Fig. 2. (a) An in0nite repetitive square grid structure showing; (b) one possible mechanism; and (c) one
possible state of self-stress.

a vector of bar forces t to a vector of nodal loads, p, At = p. If a repetitive structure
is able to carry any loading, however, the matrix A will not be of full rank. There
are three possible average stresses, corresponding to loads at in0nity (e.g. tension in
the x-direction, tension in the y-direction, and shear loading in the xy-plane) that
the structure must be able to carry, and that will appear in this formulation as states
of self-stress—bar forces t in equilibrium with zero nodal loading, i.e. t lies in the
nullspace of A. Thus, the n× n equilibrium matrix for a structure that can carry these
loads can be at most rank n− 3, where n is the number of bars, or twice the number
of joints, in the unit cell.
An example of a structure that is compatible with this static condition is the kagome

structure shown in Fig. 3 (Hyun and Torquato, 2002). The 6 × 6 equilibrium matrix
generated from the node and element numbering scheme shown is of rank 3, and it
is clear that this structure will be able to carry three independent sets of loads at
in0nity.

3. A kinematics approach

In this approach, we write kinematic equations relating node displacements and bar
extensions. This leads to a compatibility matrix C relating a vector of nodal displace-
ments d to a vector of bar extensions e. It is clear that the resultant matrix cannot be
of full rank, as rigid-body displacements in e.g. the x- and y-directions will cause no
internal deformation (a rigid-body rotation is not allowed because of the basic peri-
odicity assumption). Thus, if no other internal mechanisms are possible, the resultant
n× n compatibility matrix will be of rank n− 2.
An example of a structure that 0ts this kinematic condition is the perturbed square

grid shown in Fig. 4. The 8 × 8 compatibility matrix generated from the node and
element numbering scheme shown is of rank 6, and the only possible mechanisms are
the rigid-body displacements.
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Fig. 3. (a) The kagome structure, showing a possible unit cell and (b) a possible numbering scheme for bar
forces (I–VI) and applied loads (p1x–p3y) in the unit cell.

4. The paradox

It is well known, and may be easily shown by e.g. a virtual work argument, that the
compatibility and equilibrium matrices for a structure are related by C = AT, and
hence must have equal rank. Thus, any repetitive structure with a square equilib-
rium/compatibility matrix, cannot satisfy both the static, and the kinematic, condition
for rigidity. A structure that satis0es the static condition that rank equals n − 3 must
have an internal mechanism when the kinematics are considered. Similarly, a struc-
ture that satis0es the kinematic condition that rank equals n − 2 will not be able to
carry all possible average stresses, and must have a deformation mode that is allowed
by distorting the unit cell. This is demonstrated for the example structures in Figs. 5
and 6.
Fig. 5(a) shows the periodic internal mechanism of the kagome structure. Alternating

triangles rotate in opposite directions. This is the one 0nite mechanism of the structure,
but in this case there are in0nitely many other in0nitesimal mechanisms; an example
is shown in Fig. 5(b).
Fig. 6 shows the internal mechanism of the perturbed square grid. The 0gure also

shows the deformation of the unit cell. This deformation can easily be calculated
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Fig. 4. (a) A perturbed square grid structure, showing a possible unit cell and (b) a possible numbering
scheme for bar extensions (I–VIII) and displacements of nodes (d1x–d4y) in the unit cell.

by augmenting the allowed displacement in the compatibility equations. Three extra
deformations (of the unit cell) are allowed, as shown in Fig. 7, and this leads to an
augmented compatibility matrix C′ that is now n × (n + 3). For the perturbed square
grid, the 8× 11 C′ is now of rank 8, and the nullspace, de0ning possible mechanisms,
contains two rigid-body translations, plus the mechanism shown in Fig. 6. A similar
calculation for a structure that satis0es the static condition yields no new information,
as the ability to carry all average stresses is equivalent to saying that the unit cell cannot
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Fig. 5. Two mechanisms of the kagome structure: (a) the 0nite mechanism; and (b) one possible in0nitesimal
mechanism.

be distorted. For example, the kagome structure has an augmented compatibility matrix
that is 6×9 and of rank 6, and the nullspace contains two rigid-body translations, plus
the mechanism that had already been calculated, and shown in Fig. 5(a).

5. De�nition of determinacy

The meaning of ‘static determinacy’ and ‘kinematic determinacy’ is not always well
de0ned, and this is further complicated in this paper by the nature of repetitive struc-
tures: this section will more carefully de0ne what we mean by these terms.
We de0ne a kinematically determinate structure to be one where the only solutions

to the compatibility equations for zero bar extensions, Cd= 0, are rigid-body motions.
For 2D structures, our assumption of repetitive behaviour leaves two such motions, and
hence the nullspace of C (equal to the left nullspace of A) will be two dimensional.
For 0nite structures, we would de0ne a statically determinate structure to be one

where the only solution to the equilibrium equations for zero external load, Ar = 0 is
r = 0: the nullspace of A (equal to the left nullspace of C) is empty. That de0nition
clearly needs amending for the case of repetitive structures, as loadings of the structure
at in0nity that cause overall average stress in the structure correspond to zero nodal
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Fig. 6. The mechanism of the perturbed grid shown in Fig. 4; note the deformation of the unit cell.
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Fig. 7. An augmented nodal displacement numbering scheme for the perturbed square grid, allowing dis-
placements of the nodes (d1x–d4y) and deformation of the unit cell (dxx; dyy; dxy).

loading. Thus, we de0ne a statically determinate repetitive structure to be one where
there are non-zero solutions to the equilibrium equations for zero nodal loading, Ar=
0, but these independent solutions correspond to independent average stresses. For a
repetitive 2D structure, there are three independent average stresses, and hence the
nullspace of A (equal to the left nullspace of C) will be three dimensional.
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6. Discussion

This paper has shown that, in 2D, in0nite repetitive structures cannot be simulta-
neously statically, and kinematically, determinate. The results from the paper can be
easily extended to three dimensions. Here, the average valency of the structure must
be six; the static condition requires that the structure can support six loads at in0n-
ity, and hence the equilibrium matrix must be rank-de0cient by six; the kinematic
condition, allowing for three rigid-body motions, requires that the compatibility ma-
trix be rank-de0cient by three. Again, both conditions cannot be satis0ed by a square
equilibrium/compatibility matrix.
The arguments in this paper have been developed using pin-jointed bar models, but

the result would be equally valid for any other structural assumption, e.g. assuming that
a structure consists of rigid-bodies pinned together, as in the calculation of ‘rigid-unit
modes’ for determining displacive phase transitions in crystal structures (Giddy et al.,
1993).
Real structures are, of course, never in0nite, and must eventually reach a boundary.

Correctly adding bars at the boundary would make it possible for the complete, 0nite,
structure to be formally both kinematically and statically determinate, but in practice
this is not likely to greatly aIect the overall behaviour, as discussed in Deshpande
et al. (2001).

7. Conclusion

The results from this paper are applicable to any large-scale, repetitive system. If
any such structure is rigid, it must be redundant.
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